Search results for "membrane bioreactor"

showing 10 items of 120 documents

Aeration control in membrane bioreactor for sustainable environmental footprint

2020

In this study different scenarios were scrutinized to minimize the energy consumption of a membrane bioreactor system for wastewater treatment. Open-loop and closed-loop scenarios were investigated by two-step cascade control strategies based on dissolved oxygen, ammonia and nitrite concentrations. An integrated MBR model which includes also the greenhouse gas formation/emission processes was applied. A substantial energy consumption reduction was obtained for the closed-loop scenarios (32% for Scenario 1 and 82% for Scenario 2). The air flow control based on both ammonia and nitrite concentrations within the aerobic reactor (Scenario 2) provided excellent results in terms of reduction of o…

0106 biological sciencesEnvironmental EngineeringAeration-based control strategyBioengineeringWastewater010501 environmental sciencesMembrane bioreactorWaste Disposal Fluid01 natural sciencesGreenhouse Gaseschemistry.chemical_compoundBioreactorsAmmonia010608 biotechnologyBioreactorWaste WaterNitriteWaste Management and DisposalOperating cost0105 earth and related environmental sciencesProportion-integration controlSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentEnvironmental engineeringGeneral MedicineEnergy consumptionOxygenchemistryGreenhouse gasMembrane bioreactorEnvironmental scienceSewage treatmentAerationBioresource Technology
researchProduct

Anaerobic membrane bioreactors (AnMBR) treating urban wastewater in mild climates

2020

[EN] Feasibility of an AnMBR demonstration plant treating urban wastewater (UWW) at temperatures around 25-30 degrees C was assessed during a 350-day experimental period. The plant was fed with the effluent from the pretreatment of a full-scale municipal WWTP, characterized by high COD and sulfate concentrations. Biodegradability of the UWW reached values up to 87%, although a portion of the biodegradable COD was consumed by sulfate reducing organisms. Effluent COD remained below effluent discharge limits, achieving COD removals above 90%. System operation resulted in a reduction of sludge production of 36-58% compared to theoretical aerobic sludge productions. The membranes were operated a…

0106 biological sciencesEnvironmental EngineeringBioengineeringMild/warmer climateWastewater010501 environmental sciencesWaste Disposal Fluid01 natural scienceschemistry.chemical_compoundBioreactors010608 biotechnologyBioreactorUrban wastewater (UWW)AnaerobiosisSulfateWaste Management and DisposalEffluentTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesRenewable Energy Sustainability and the EnvironmentAnaerobic membrane bioreactor (AnMBR)Membrane foulingMembranes ArtificialGeneral MedicineBiodegradationPulp and paper industryMethane productionIndustrial-scale membraneMembraneWastewaterchemistryEnvironmental scienceMethaneAnaerobic exerciseDemonstration plant
researchProduct

A plant-wide modelling comparison between membrane bioreactors and conventional activated sludge

2020

Abstract A comprehensive plant-wide mathematical modelling comparison between conventional activated sludge (CAS) and Membrane bioreactor (MBR) systems is presented. The main aim of this study is to highlight the key features of CAS and MBR in order to provide a guide for an effective plant operation. A scenario analysis was performed to investigate the influence on direct and indirect greenhouse gas (GHG) emissions and operating costs of (i) the composition of inflow wastewater (scenario 1), (ii) operating conditions (scenario 2) and (iii) oxygen transfer efficiency (scenario 3). Scenarios show higher indirect GHG emissions for MBR than CAS, which result is related to the higher energy con…

0106 biological sciencesEnvironmental EngineeringBioengineeringWastewater010501 environmental sciencesMembrane bioreactor01 natural sciencesWaste Disposal FluidGreenhouse GasesBioreactors010608 biotechnologyBioreactorWaste WaterScenario analysisWaste Management and Disposal0105 earth and related environmental sciencesWWTPEnergy demandMathematical modellingSewageSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentEnvironmental engineeringMembranes ArtificialGeneral MedicineEnergy consumptionActivated sludgeWastewaterPlant-wide modelGreenhouse gasSimple modelEnvironmental scienceWaste disposal
researchProduct

Assessment and characterization of the bacterial community structure in advanced activated sludge systems

2019

Abstract The present study is aimed to assess and characterize the structure of bacterial community in advanced activated sludge systems. In particular, activated sludge samples were collected from an Integrated Fixed-film Activated Sludge – Membrane Bioreactor pilot plant under a University of Cape Town configuration with in-series anaerobic (Noair)/anoxic (Anox)/aerobic (Oxy) reactors – and further analyzed. The achieved results – based on Next Generation Sequencing (NGS) of 16S rDNA amplicons – revealed that the bacterial biofilm (bf) communities on plastic carriers of Oxy and Anox reactors had a greater diversity compared to suspended (sp) bacterial flocs of Oxy, Anox and Noair. Indeed,…

0106 biological sciencesEnvironmental EngineeringIFAS-MBRBiomassBioengineeringWastewater treatment010501 environmental sciencesMembrane bioreactor01 natural sciencesBioreactors010608 biotechnologyBiomassRhodobacteraceaeDNA extractionWaste Management and DisposalNGS of 16S rDNA amplicon0105 earth and related environmental sciencesSewageSettore ICAR/03 - Ingegneria Sanitaria-AmbientalebiologyRenewable Energy Sustainability and the EnvironmentChemistryMicrobiotaBiofilmGeneral Medicinebiology.organism_classificationPulp and paper industryAnoxic watersActivated sludgeBiofilmsSewage treatment16S rRNA geneBacterial communityBacteriaBioresource Technology
researchProduct

Integrated Fixed Film Activated Sludge (IFAS) membrane BioReactor: The influence of the operational parameters

2020

Abstract The present paper investigated an Integrated Fixed Film Activated Sludge (IFAS) Membrane BioReactor (MBR) system monitored for 340 days. In particular, the short-term effects of some operational parameters variation was evaluated. Results showed a decrease of the removal rates under low C/N values. Respirometry results highlighted that activated sludge was more active in the organic carbon removal. Conversely, biofilm has a key role during nitrification. The major fouling mechanism was represented by the cake deposition (irreversible).

0106 biological sciencesMembrane foulingEnvironmental EngineeringBiological nutrient removalBioengineering010501 environmental sciencesMembrane bioreactor01 natural sciencesRespirometryBioreactors010608 biotechnologyDeposition (phase transition)Waste Management and Disposal0105 earth and related environmental sciencesFoulingSewageSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentChemistryMembrane foulingMembranes ArtificialGeneral MedicineRespirometryPulp and paper industryIFASNitrificationActivated sludgeBiofilmsMembrane bioreactorNitrification
researchProduct

Integrated membrane bioreactors modelling: A review on new comprehensive modelling framework

2021

International audience; Integrated Membrane Bioreactor (MBR) models, combination of biological and physical models, have been representing powerful tools for the accomplishment of high environmental sustainability. This paper, produced by the International Water Association (IWA) Task Group on Membrane Modelling and Control, reviews the state-of-the-art, identifying gaps for future researches, and proposes a new integrated MBR modelling framework. In particular, the framework aims to guide researchers and managers in pursuing good performances of MBRs in terms of effluent quality, operating costs (such as membrane fouling, energy consumption due to aeration) and mitigation of greenhouse gas…

0106 biological sciencesPerformance indicatorsComputer scienceWastewater treatment010501 environmental sciencesWastewaterMembrane bioreactor01 natural sciences7. Clean energyWaste Disposal FluidBioreactorsTheoreticalModels11. SustainabilityWaste Management and Disposalmedia_common[SDE.IE]Environmental Sciences/Environmental EngineeringWaste DisposalGeneral MedicineEnergy consumptionBiological processes High environmental sustainability Modelling framework Performance indicators Bioreactors Membranes Artificial Models Theoretical Waste Water Greenhouse Gases Waste Disposal Fluid6. Clean waterBiological processes; High environmental sustainability; Modelling framework; Performance indicators; Bioreactors; Membranes Artificial; Models Theoretical; Waste Water; Greenhouse Gases; Waste Disposal FluidInternational watersArtificialFluidBiotechnologyEnvironmental Engineeringmedia_common.quotation_subjectModelling frameworkBioengineering12. Responsible consumptionGreenhouse Gases010608 biotechnologyGénie chimiqueQuality (business)Waste Water[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringGénie des procédés0105 earth and related environmental sciencesMembranesBiological processesSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentMembrane foulingMembranes ArtificialModels Theoretical[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation13. Climate actionGreenhouse gasSustainabilityHigh environmental sustainabilityBiochemical engineeringPerformance indicator
researchProduct

Acclimatised rumen culture for raw microalgae conversion into biogas: Linking microbial community structure and operational parameters in anaerobic m…

2019

[EN] Ruminal fluid was inoculated in an Anaerobic Membrane Reactor (AnMBR) to produce biogas from raw Scenedesmus. This work explores the microbial ecology of the system during stable operation at different solids retention times (SRT). The 16S rRNA amplicon analysis revealed that the acclimatised community was mainly composed of Anaerolineaceae, Spirochaetaceae, Lentimicrobiaceae and Cloacimonetes fermentative and hydrolytic members. During the highest biodegradability achieved in the AnMBR (62%) the dominant microorganisms were Fervidobacterium and Methanosaeta. Different microbial community clusters were observed at different SRT conditions. Interestingly, syntrophic bacteria Gelria and …

0106 biological sciencesRumenEnvironmental EngineeringMicroorganismBioengineering010501 environmental sciencesWaste Disposal Fluid01 natural sciencesMethanosaetaBioreactorsBiogasMicrobial ecologyBioenergyRNA Ribosomal 16S010608 biotechnologyMicroalgaeBioreactorAnimalsAnaerobiosisWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesbiologyAnaerobic membrane bioreactor (AnMBR)Renewable Energy Sustainability and the EnvironmentChemistryMicrobiotaGeneral MedicineBiogasMicroalgaeBiodegradationbiology.organism_classificationPulp and paper industryMicrobial population biologyBiofuels16S rRNA geneMethaneBioresource Technology
researchProduct

A new strategy to maximize organic matter valorization in municipalities: combination of urban wastewater with kitchen food waste and its treatment w…

2017

[EN] The aim of this study was to evaluate the feasibility of treating the kitchen food waste (FW) jointly with urban wastewater (WW) in a wastewater treatment plant (WWTP) by anaerobic membrane technology (AnMBR). The experience was carried out in six different periods in an AnMBR pilot-plant for a total of 536 days, varying the SRT, HRT and the food waste penetration factor (PF) of food waste disposers. The results showed increased methane production of up to 190% at 70 days SRT, 24 hours HRT and 80% PF, compared with WW treatment only. FW COD and biodegradability were higher than in WW, so that the incorporation of FW into the treatment increases the organic load and the methane producti…

0208 environmental biotechnology02 engineering and technology010501 environmental sciencesGarbageWastewater01 natural sciencesWaste Disposal FluidMembrane technologyKitchen food waste (FW)Organic matterOrganic matter valorizationMethane productionCitiesSubmerged anaerobic membrane bioreactor (AnMBR)Waste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental scienceschemistry.chemical_classificationAnaerobic wastewater treatmentWaste managementBiodegradation020801 environmental engineeringFood wasteWastewaterchemistryPenetration factorPenetration factor (PF)Environmental scienceSewage treatmentWastewater co-treatmentMethane
researchProduct

Waste activated sludge dewaterability: comparative evaluation of sludge derived from CAS and MBR systems

2016

Nowadays, sludge dewatering is one of the greatest operational cost to wastewater treatment cycle. Specifically, 1t of fresh sludge to be disposed is composed, on average, by 0.25 - 0.30t of suspended solids, with an average cost for treatment and disposal around 280 - 470 €/t of suspended solids. Despite several technologies have been developed with the focus to reduce also the specific sludge production, still mechanical dewatering represents a crucial step to limit the amount of sludge to be disposed. Many physical–chemical parameters influence the sludge dewaterability: floc structure, particle size, bound water content, surface charge and hydrophobicity, Extracellular Polymeric Substan…

0208 environmental biotechnologyCapillary suction timeOcean Engineering02 engineering and technology010501 environmental sciencesMembrane bioreactor01 natural sciencesMBRBioreactorActivated sludge; Capillary suction time; MBR; Sludge dewaterability; Water Science and Technology; Ocean Engineering; Pollution0105 earth and related environmental sciencesWater Science and TechnologyWaste managementSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleSludge Dewaterability Activated Sludge MBR Capillary Suction Time.DewateringPollution020801 environmental engineeringWaste treatmentActivated sludgeWastewaterActivated sludgeEnvironmental scienceWater treatmentSewage treatmentSludge dewaterability
researchProduct

Oil-degrading bacteria from a membrane bioreactor (BF-MBR) system for treatment of saline oily waste: Isolation, identification and characterization …

2016

A collection of forty-two (42) strains was obtained during microbiological screening of a Membrane Bioreactor (MBR) system developed for the treatment of saline oily waste originated from marine transportation. The diversity of the bacterial collection was analyzed by amplification and sequencing of the 16S rRNA gene. Taxonomic analysis showed high level of identity with recognized sequences of seven (7) distinct bacterial genera (Alcanivorax, Erythrobacter, Marinobacter, Microbacterium, Muricauda, Rhodococcus and Rheinheimera). The biotechnological potential of the isolates was screened considering an important factor such as the biosurfactant production. In particular fourteen (14) biosur…

0301 basic medicine030106 microbiologyMicrobacteriumOil pollution010501 environmental sciencesMembrane bioreactor01 natural sciencesMicrobiologyMicrobiologyBiomaterials03 medical and health sciencesAlcanivoraxOil-degrading bacteriaAlcanivorax Membrane bioreactor (MBR) system Oil pollution Oil-degrading bacteria Saline oily wasteWaste Management and DisposalMembrane bioreactor (MBR) system0105 earth and related environmental sciencesbiologyMarinobacter16S ribosomal RNAbiology.organism_classificationIsolation (microbiology)Saline oily wasteAlcanivoraxRhodococcusBacteria
researchProduct